MATH 3060 Assignment 7 solution

Chan Ki Fung

November 26, 2021

- 1. (a) A subset is nowhere dense if and only if the complement of its closure is dense. So it suffices to show $\overline{E} = \overline{E}$. In other words, it suffices to show \overline{E} is closed. In fact, let $x \notin \overline{E}$, by definition, there exists a small ball $B_r(x)$ of x so that $B_r(x) \subset E^c$. But then for each $x' \in B_r(x)$, we can find another small ball $B_{r'}(x')$ so that $B_{r'}(x') \subset B_r(x) \subset E^c$. This shows that $B_r(x) \subset \overline{E}^c$ and thus \overline{E} is closed.
 - (b) Let S be a subset of E, then $\overline{S} \subset \overline{E}$, and thus $\overline{S}^c \supset \overline{E}^c$ is dense.
- 2. (a) Let $f \in C[0,1]$, and r > 0. We need to show that $B_r(f)$ contains some f' with $\int_0^1 f' \neq 0$. If $\int_0^1 f \neq 0$, we can take f' = f. If $\int_0^1 f = 0$, then we can take $f' = f + \frac{r}{2}$.
 - (b) First note that the set

$$S = \{ f \in C[0,1] : f(0.1) = 2 \}$$

is closed. In fact, if $f_n \in S$, and $f_n \to f$ uniformly, then $f(0.1) = \lim f_n(0.1) = 2$. So $f \in S$.

Next suppose $g \notin S$, and r > 0, we need to find a $g' \in B_r(g) \setminus S$. If $g \notin S$, then we can take g' = g. If $g \in S$, then take $g' = g + \frac{r}{2}$, we have $g'(0.1) = 2 + \frac{r}{2} \neq 2$, so $g' \notin S$.

- 3. From homework 4, question 3b) we know that H is closed.
 - Now suppose $\{x_m\} \notin H$, and r > 0, we need to find $\{x'_m\} \in B_r(\{x_m\}) \setminus H$. If $\{x_m\} \notin H$, then we can take $\{x'_m\} = \{x_m\}$. If $\{x_m\} \in H$, then we can find $N \in \mathbb{N}$ so that $\frac{r}{2} > \frac{2}{N}$. We can define $x'_n = x_n$ if $n \neq N$ and $x'_N = x_N + \frac{r}{2}$. Then $\{x'_m\} \in B_r(\{x_m\})$ and

$$x'_N > x_n + \frac{2}{N} \ge \frac{1}{N}.$$

4. Let U be an open set, then $\partial U = \overline{U} \cap U^c$ is the intersection of two closed subsets, and thus closed. Now let $x \notin \partial U$, and r > 0, we need to find $x' \in B_r(x)$ so that $x' \notin \partial U$. If $x \notin \partial U$, then we can take x' = x. If $x \in \partial U$, then we can take $x' \in U$ by the definition of boundary. Then $x' \notin \partial U$ because $\partial U \subset U^c$. Conversely, suppose F is nowhere dense and closed, then take $U = F^c$. Then U must be open and dense. Now we can conclude $\partial U = F \cap \overline{U} = F$ because the closure of U is the whole space.